What is Qwoted?

Qwoted is a free expert network: we help reporters connect with experts & we help those same experts build relationships with top reporters.

Event Date Wed Mar 31 EDT (over 1 year ago)
Location Online
Region Americas

Machine learning has had a dramatic effect on anti-money laundering (AML) risk management. Its automated analysis and risk-mitigating algorithms have strengthened AML programs overall and made them more efficient than ever. However, it has presented unique challenges in the form of systemic vulnerabilities such as algorithmic biases. This means an algorithm may de-risk or deny a customer banking service based on one element of their risk profile such as being domiciled high-risk jurisdiction for example. Conversely, a biased algorithm could turn an automated blind eye toward genuine AML risks.

This webinar will dive into algorithmic bias, how it affects the global financial system and how to avoid and remedy problems it can cause.

Who Should Attend?
• Compliance Officers
• Legal Advisors
• Risk Managers
• Industry Consultants
• IT Specialists


2021 Speakers

Katie Elliot, CAMS
Vice President Risk Management and Compliance, Stanford Federal Credit Union

Alison Jimenez
President and Founder, Dynamic Securities Analytics, Inc.

Tom Nadratowski, CAMS
Managing Director, Citi Internal Audit Compliance and AML

Vanessa I. Pinto, CAMS-Audit
Director, Morgan Stanley